Physiologic rate of carrier-mediated Ca2+ entry matches active extrusion in human erythrocytes
نویسندگان
چکیده
The intracellular Ca2+ concentration of nearly all cells is kept at submicromolar levels. The magnitudes of transmembrane Ca2+ movement that maintain this steady state in the human red blood cell have long been debated. Although there is agreement that the physiologic extrusion of Ca2+ by the well-characterized Ca2+. ATPase amounts to 45 mumol/liter cells per h (1982. Nature (Lond.). 298:478-481), the reported passive entry rates in physiological saline (2-20 mumol/liter cells per h) are all substantially lower. This discrepancy could be due to incomplete inhibition of the pump in the previous measurements of Ca2+ entry. We therefore examined both rate and mechanism of entry after completely inactivating the pump. This required pretreatment with iodoacetamide (to lower the intracellular ATP concentration) and vanadate (to inhibit any residual Ca2+ pump activity). The rate of Ca2+ entry (53 mumol/liter cells per h) was now found to be comparable to the accepted extrusion rate. Entry closely obeyed Michaelis-Menten kinetics (Vmax = 321 +/- 17 nmol Ca/g dry wt per h, Km = 1.26 +/- 0.13 mM), was competitively inhibited by external Sr2+ (Ki = 10.8 +/- 1.2 mM), and was accelerated by intracellular Ca2+. 45Ca2+ efflux from these pump-inactivated cells was also accelerated by either external Ca2+ or Sr2+. These accelerating effects of divalent cations on the opposite (trans) face of the membrane rule out a simple channel. Substrate-gated channels are also ruled out: cells equilibrated with 45Ca2+ lost the isotope when unlabeled Ca2+ or Sr2+ was added externally. Thus, passive Ca2+ movements occur predominantly by a reversible carrier-mediated mechanism for which Sr2+ is an alternate substrate. The carrier's intrinsic affinity constants for Ca2+ and Sr2+, 1.46 and 0.37 mM-1, respectively, indicate that Ca2+ is the preferred substrate.
منابع مشابه
Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells.
The plasma membrane calcium pump (PMCA) is the only active Ca2+ transporter in human red blood cells (RBCs). Previous measurements of maximal Ca2+ extrusion rates (Vmax) reported only mean values in the RBC population. Despite early evidence for differences in Ca2+ extrusion capacity among RBCs, the precise Vmax distribution remained unknown. It was important to characterize this distribution t...
متن کاملCoordinated control of renal Ca2+ handling.
Ca2+ homeostasis is an important factor, which is underlined by the numerous clinical symptoms that involve Ca2+ deficiencies. The overall Ca2+ balance is maintained by the concerted action of Ca2+ absorption in the intestine, reabsorption in the kidney, and exchange from bone, which are all under the control of the calciotropic hormones that are released upon a demand for Ca2+. In the kidney, ...
متن کاملModeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry.
Employing realistic parameters, we have demonstrated that a relatively simple mathematical model can reproduce key features of steady-state Ca2+ transport with the assumption of two mechanisms of Ca2+ entry: a channel-like flux and a carrier-mediated transport. At low luminal [Ca2+] (1-5 mM), facilitated entry dominates and saturates with Km = 0.4 mM. At luminal [Ca2+] of tens of millimolar, ap...
متن کاملCa2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles
45Ca2+ uptake by hepatopancreatic brush-border membrane vesicles of Atlantic lobster (Homarus americanus) occurred by a combination of three independent processes: (1) an amiloride-sensitive carrier-mediated transport system; (2) an amiloride-insensitive carrier-mediated transport system; and (3) a verapamil-inhibited channel process responsive to transmembrane potential. Both carrier-mediated ...
متن کاملActive extrusion of Ca2+ from epiphysial chondrocytes of normal and rachitic chickens.
Chondrocytes isolated from the epiphysial cartilage of chickens were exposed to either the ionophore A23187 or KCN, in the presence of 0.4 mM-extracellular Ca2+. This treatment elicits a prompt release of cell Ca2+, which can be measured as net cation efflux by a highly sensitive Ca2+-selective electrode system. Pre-exposure of chondrocytes to the metabolic inhibitors 2-deoxy-D-glucose or oligo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 98 شماره
صفحات -
تاریخ انتشار 1991